Techniques for efficient model deployment and optimization
Explore how different quantization levels affect model size and accuracy:
Step-by-step process for optimizing and deploying your model:
model.save_pretrained("optimized-model")Export model weights and configuration
Compare key performance metrics before and after optimization:
# Load the model
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b")
# Quantize the model
quantized_model = torch.quantization.quantize_dynamic(
model,
{torch.nn.Linear},
dtype=torch.qint8
)
# Convert to GGUF format
!python convert.py \
--model-path ./quantized_model \
--outfile model.gguf \
--outtype q4_0
# Load for inference
from llama_cpp import Llama
llm = Llama(
model_path="model.gguf",
n_gpu_layers=32,
n_ctx=2048
)