Techniques for efficient model deployment and optimization
Explore how different quantization levels affect model size and accuracy:
Step-by-step process for optimizing and deploying your model:
model.save_pretrained("optimized-model")
Export model weights and configuration
Compare key performance metrics before and after optimization:
# Load the model model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") # Quantize the model quantized_model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) # Convert to GGUF format !python convert.py \ --model-path ./quantized_model \ --outfile model.gguf \ --outtype q4_0 # Load for inference from llama_cpp import Llama llm = Llama( model_path="model.gguf", n_gpu_layers=32, n_ctx=2048 )