Master the art of fine-tuning large language models
Monitor loss and accuracy during the fine-tuning process:
Experiment with different hyperparameters and see their impact:
from transformers import AutoModelForCausalLM, AutoTokenizer from datasets import load_dataset import torch # Load pre-trained model model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b") # Prepare training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=4, learning_rate=2e-5, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", ) # Fine-tune the model trainer = Trainer( model=model, args=training_args, train_dataset=dataset, data_collator=DataCollator() )
[ { "instruction": "Explain quantum computing", "response": "Quantum computing uses quantum...", "category": "science" }, { "instruction": "Write a poem about spring", "response": "Cherry blossoms dance...", "category": "creative" } ]
dataset = load_dataset("json", data_files="train.json") dataset = dataset.map(format_instruction)