Master the art of fine-tuning large language models
Monitor loss and accuracy during the fine-tuning process:
Experiment with different hyperparameters and see their impact:
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
import torch
# Load pre-trained model
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b")
# Prepare training arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
learning_rate=2e-5,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
)
# Fine-tune the model
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
data_collator=DataCollator()
)[
{
"instruction": "Explain quantum computing",
"response": "Quantum computing uses quantum...",
"category": "science"
},
{
"instruction": "Write a poem about spring",
"response": "Cherry blossoms dance...",
"category": "creative"
}
]dataset = load_dataset("json", data_files="train.json")
dataset = dataset.map(format_instruction)